On Using g-Gram Locations
in Approximate String Matching*

Erkki Sutinen and Jorma Tarhio

Department of Computer Science
P.O. Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki, Finland
E-mail: {sutinen,tarhio}@cs.Helsinki.FI

Abstract. Approximate string matching with % differences is consid-
ered. Filtration of the text is a widely adopted technique to reduce the
text area processed by dynamic programming. A sublinear filtration algo-
rithm is presented. The method is based on the locations of the g-grams
in the pattern. Samples of g-grams are drawn from the text at fixed peri-
ods, and only if consecutive samples appear in the pattern approximately
in the same configuration, the text area is examined with dynamic pro-
gramming. Practical experiments show that this approach gives better
filtration efficiency than an earlier method.

1 Introduction

Background. Efficient solutions for approximate string matching are useful in
many areas, such.as molecular biology, text databases, and data communications.
We will consider the k differences problem, a version of the approximate string
matching problem. Given integer k and two strings, tezt T = T[l...n] and
pattern P = P[1...m] over some alphabet X of size ¢, the task is to find (the end
points of) all approximate occurrences of P in T. An approximate occurrence
signifies substring p of T such that at most k editing operations (insertions,
deletions, changes) are needed to convert p to P, in other words edit distance
d(P,p) is at most k.

There are numerous algorithms proposed for this problem. A natural solu-
tion is a modification of dynamic programming. This approach leads to O(nk)
algorithms [Ukk85, GaP89]. Because processing of all the text positions with
dynamic programming is rather slow, many filtering techniques [Ukk92, TaU93,
PeW93, ChL94, ChM94] have been proposed to reduce the text area necessary
to examine using dynamic programming. Some of these approaches lead even to
algorithms which are sublinear on the average.

It is typical for the k differences problem that none of the solutions is the best
for every combination of problem parameters m,k, and ¢ [JTU91]. Especially
large k is troublesome for small alphabets. The key factor is f = %l, the
efficiency of the filtration phase, where n, is the number of text positions left

* The work was supported by the Academy of Finland.

for the dynamic programming phase. Good filtration efficiency is crucial for the
practical speed of an algorithm. Besides saving checking time, filtration also
consumes resources, which should be taken into account in designing efficient
filtration techniques.

One way to reduce n, is to develop necessary conditions for a text area to
include an approximate match of the pattern [GrL89, Ukk92, Tak94]. These
conditions often deal with ¢g-grams of the pattern, i.e. continuous substrings of
length g. The idea is that whenever an approximate match occurs, it has to
resemble the original pattern. This resemblance is reflected by the existence of
the same g-grams both in the pattern and in its approximate match.

Takaoka [Tak94] presents an efficient filtration technique based on sampling.
In his method every Ath g-gram of the text is drawn as a sample. If a sample
appears in the pattern, a neighborhood of the sample is examined using dy-
namic programming. Takaoka’s method is a simplification of the Chang-Lawler
algorithm [ChL94].

”n

Sketch of the solution. Besides the condition for the number of common g-grams
in the pattern and its approximate match, one may also utilize the fact that the
preserved g¢-grams have to be approzimately at the same locations both in the
pattern and in its approximate match. We will present a new sublinear filtration
technique based on a sampling scheme similar to Takaoka’s approach and on
approximate locations of the ¢g-grams in the pattern.

An approximate location of a g-gram in the pattern is defined by dividing
the pattern into blocks using sampling step h > ¢. Let Py be (k +2)h characters
long prefix of the pattern. We cut Py into k + 2 blocks of k positions and extend
each block with k + ¢ — 1 positions to the right. Then two consecutive blocks
have an overlap of k + ¢ — 1 positions.

In the text, we examine every hth ¢-gram as a sample. Let dy,ds,... be
the samples. Because h > ¢, the samples do not overlap. We will show that a
necessary condition for an approximate match is that at least two of the k& + 2
consecutive samples d;_x_1, ..., d; match. In other words, d(j—k-2)+i € Qs holds
for at least two indices ¢, 1 < ¢ < k + 2, where Q; is the set of the g-grams of
the ith block of the pattern. We will also consider a more general case, where
we require that at least s of the k + s consecutive samples match.

In Fig. 1 there is an example, where m = 40,k = 2,¢ = 3, and h = 9. Samples
have been boxed. We have dy € Q1,d3 € @3, and dy € Q3 and the count of
positive samples is three at ds = PQS so that there is a potential approximate
occurrence of the pattern.

We use the shift-add approach [BaG92] to compute the sum of matches for the
k + 2 consecutive samples. By doing this, we actually reduce the k differences
problem to a variation of the & mismatches problem, where each position of
the pattern has a set of accepted characters of its own. In our approach, the
“transformed” pattern contains k + 2 positions (i.e. samples) and each of them
has a set of accepted g-grams. A similar transformation is applied to single
characters in [TaU93].

PATTERN = abcdefgh)'.ljklmnopqr%tABCDEFGL-{IJKLMNOPbRST

BLOCKS = abcdefghijklm = @,
jklmnopgrstAB = Q,
StABCDEFGHIJK = Q,
HIJKLMNOPQRST = Q,

SAMPLES
dl dz d; d4 ds
- bood. . v . .lezZ). . [abddefghxiiKimnopgEsUABCDEHGHT TR LMNOBOST .. .
count: 0 0 0 1 3

Fig.1. Ezample of sampling.

In earlier studies, only Holsti and Sutinen [HoS94] use the locations of the
g-grams, but they consider only static texts and the details of their method are
different.

Results. Let us assume that individual characters in P and T are chosen ran-
domly. We will show that the asymptotic bound for the filtration efficiency of
our method is £2(1 — ﬂ;‘;k—z) The average time complexity is O(2 log, m) for
small values of £ when ¢ = log, m.

We carried out some experiments and compared our method with Takaoka’s
method which is among the best in practice. The filtration efficiency of our
method was much better for a large range of problem parameters. For example,
the number of text positions our algorithm processes with dynamic programming
is less than g% of the corresponding number for Takaoka’s method in the case of
c =40, m =40, and k£ = 8.

QOutline. The rest of this paper is organized as follows. In Section 2, we start
with our sampling theorems, stating the necessary conditions for an approximate
match of the pattern in a text area in terms of occurrences of g-grams. We present
our algorithm in Section 3, and analyze it in Section 4. In Section 5 we review
our preliminary experiments before giving concluding remarks in Section 6.

2 Sampling Based on g-Grams

Let ¥ > 0,¢g > 1, and s > 1 be integers. In the text, every hth ¢-gram is
examined as a sample. We call these samples g-samples. Distance h between the
endpoints of two consecutive g-samples 1s the sampling step. Let d;, din/h]
be the g-samples of the text. Let us assume that d; ends at position h.

Let us consider what the maximal value of h could be for s = 2. Let p =
T[j1...j2] be an approximate match of pattern P, i.e. d(P.p) < k. Since k

deletions produce the narrowest approximate match such that pis m—k positions
wide, p must include at least m — k — ¢ + 1 g-grams. We require that p includes
k + 2 non-overlapping substrings of equal size h. These conditions lead to the

following bound:
m—k—q+1

- k42
The basis for sampling is in Theorem 1.

Theorem 1. Let p be a substring of T such that d(P,p) < k. If

m—k~q+1J
k+s

is the sampling step, h > q, then at least s of the g-samples in p occur in P.

h=|

Proof. Let p be T'[i...j]. Let r be the number of g-samples in p. To estimate
the lower bound for 7, let us consider the situation where the leftmost g-sample
of p starts as right as possible; in this case the leftmost g-sample in p starts at
(t—1) +h. Since the rightmost possible g-sample in p starts at position j—q+1
and the sampling step is h (see Fig.2), we get the inequality for the starting
position of the rth g-sample in p:

(i—1)+rh>j—q+1—h.

j-a+l b)

Fig.2. Locations of g-samples in p = T[i ... j].

Since |p| = j — (¢ — 1), this equals
(r+1Dh>|pl—q+1,
from which we get

lpl—q+1
U G
r> h

Since h < m=k=atl 514 |p| > m—k, we get
— k+s - g

lpl—q+1
- L . L — s 1>k - 1.
r > S— 1(k+s) + s (D

Let t be the number of the ¢g-samples in p which are g-grams of P. We make
an antithesis: t < s — 1.

According to inequality (1), p includes » > k + s — 1 g-samples. Now r — ¢
g-samples in p do not occur in P. Because

r—t>k+s—1—-t>k+s—-1-(s—1)=k

and because the g-samples do not overlap (A > ¢), p includes more than k
differences with P. Thus d(P, p) > k holds, which is a contradiction. 0O

Also Takaoka’s method [Tak94] is based on Theorem 1, and a similar idea is
also presented by Wu and Manber [WuM92]. In Takaoka’s method, if a g-sample
occurs anywhere in the pattern, the neighborhood of this sample is checked with
dynamic programming. Thus Takaoka considers only the case s = 1. Takaoka
presents a similar theorem without a proof for a fired position of P.

Our approach is different, because our algorithm utilizes the locations of the
g-grams in P. The algorithm examines k + s consecutive g-samples together. Let
p be an approximate match of P in T". Let us assume that h has been selected
according to Theorem 1 so that there are at least k + s consecutive g-samples in
p. It turns out that then at least s of those samples must exist in the pattern,
and these samples must have the same relative locations in both the pattern and
the text. This requirement is stronger than the condition of Theorem 1.

We select » = k + s fixed blocks from the pattern: '

P[1...h+d),P[h+1...2h+d],...,P[(r—1Dh+1...rh +d],

where d = k+¢—1. Two consecutive blocks have an overlap of k+g¢—1 positions
and each block contains h + k ¢-grams and h + k + g — 1 characters.

The basis for the width of a block is sampling step h. In order to be able
to handle g-grams, each block is extended ¢ — 1 positions to the right. In an
approximate occurrence of P, the maximal difference of shifts of two ¢g-grams is
k positions and so each block is extended still £ positions to the right.

Note that the last m — rh — d ¢g-grams of P do not necessarily occur in any
block, when rh + d < m. This is an advantage in filtration.

Let ; denote the set of the ¢-grams of the ith block. Our approach is based
on the following theorem.

Theorem 2. Let h be as in Theorem 1. Let p = T[i...j] be an approzimate
match of P, i.e. d(P,p) < k. Then for any sequence of k + s consecutive q-
samples dyyy, ..., doyr4s tncluded by p, there is integer t such that dyyips € Qs
holds for at least s of the samples.

Sketch of the proof. Let pinclude r g-samples. Theorem 1 implies that 7 > k+s.
Let us consider an arbitrary sequence of k + s consecutive g-samples in p. We
know that at least s of the samples occur in P, because otherwise d(P, p) would
be greater than k. Let these s samples be R = {d;,,...,ds,} and let ey,..., ¢,
be the end positions of their occurrences in P.

Let us align the pattern with the text according to dp,. Let S(?) = e; — e; —
(b; — b1) * h be the shift of dy, in P. Let i, and imqe be the indices of the
samples in R with which S(¢) get its minimum and maximum, respectively. The
definitions imply S(1) = 0 and S(imin) < 0 < S(imaz)-

Clearly it is possible to select R and the corresponding occurrences in P in
such a way that S(4maz) — S(émin) < k holds, because otherwise d(P, p) would
be greater than k.

Let us denote the start and end positions of block @; by ¢; and g;, respec-
tively. Let dj, occur in Q4 = P[c, .. .gq]- To complete the proof, it is sufficient
to show that ¢; < €1+ S(imin) —¢+1 and €1 4+ S(imaz) < gz holdfor z = a—1,
a, or a + 1. Then d,, € Qo+(s;-5,) is clearly satisfied for every dj; € R, which
means that the value of ¢ is b; — b — z.

There are three cases to consider.

(i) Let us assume that g, — e; > k and e; — (¢ + ¢ — 1) > k. Now both
ca < €1+ S(tmin) — ¢+ 1 and €1 + S(imazr) < ga are clearly satisfied.

(ii) Let us then consider the case g, — €1 < k. If go — (e1 + S(imin)) > k
holds, both ¢4 < €1 + S(imin) — ¢+ 1 and €1 + S(imaz) < ga are satisfied. If
9a—(e1+8S(imin)) < k, then cay1 < €14 S(imin) —¢+1 and e1 +S(imas) < gat1
hold.

(iii) The case e; — (¢cqa + ¢ — 1) < k is symmetric with case (ii). O

The bounds for the location of an approximate match are determined by the
following theorem, when we have found enough matching g-samples.

Theorem 3. Let us assume that s of k+s consecutive g-samples dpy1, ..., dpyrkts
satisfy dpyi € Qi where g-sample dpyr4s ends at text position j. Then an ap-
prozimate occurrence of the pattern is located in text area

Tj—(k+s)h—-2k—-q+2...5+m—(k+s—1)h+k—q].
The width of the text area is m + 3k + h —1.

Proof. Let dyyi = u be one of the g-samples satisfying dp4: € Q:, 1 <t < k+s.
Let dy;¢ end at position j'. Weset A=j—j' = (k+s—t)h.

Let us first study end position jg of an approximate occurrence of P. We
consider the case when jgr reaches its maximum value. This happens when g¢-
gram u occurs at the leftmost possible position in block @, i.e. the end position
of uin Pis i = (t — 1)h + ¢ (see Fig. 3). The length of the suffix of P to the
right of iy is trivially mg = m — .

Since we allow k differences between P and its approximate match in 7', the
approximate match cannot reach more than mg +k positions over j/. This means
that

jrR=j+mr+k
:j—A+m—-iL+k
=j—(k+s—-Dh+m-(t~-1Dh—q+k
=j+m—(k+s—-1h+k—q.

o. 1

Fig. 3. Locations of dyyt in T and P.

To find out the leftmost possible starting position j for the approximate
match, we examine the case when j; reaches its minimum. Now, u occurs at the
rightmost position inside block @, that is, it ends at position igr = th4+¢—1+k.

For the same reason as in the case above, the approximate match in text T
cannot start before

jr=3'"—(r—-1) -k
=j—A—th—g4+1—k+1—k
=j—(k+s—t)h—th—2k—qg+2
=j—(k+s)h—2k—q+2.

The width of'the text area ls m+ 3k +h — 1. 0

3 Algorithm

We will reduce the & differences problem to a generalized k mismatches problem,
where each position of the pattern has a set of accepted characters of its own.
We consider ¢-grams as the alphabet, g-samples as text 7/ = dj . ..dys, and
blocks of the original pattern as pattern P’ = Q; ... Qpm, where n’ = [n/h] and
m' = k 4+ s. A approximate match of P’ with at most & mismatches ends at 7,
if T'[j — m' 4+ 1] € P[d], that is dj_m4i € Q;, holds for at least m’ — k indices 4,
1<i<m.

The transformed problem can be efficiently solved using the shift-add tech-
nique [BaG92]. We define bit matrix B as follows: B[d, j] = 1, if ¢-gram d belongs
to ()j, otherwise B[d, j] = 0. For each ¢-gram d, B[d,] gives the block profile of
d.

Array M[1...m'] is used to compute the number of matching g-samples in
an alignment of the pattern 7"[z...7 + m’ — 1]. An approximate match with at
most k mismatches is found when M[m'] > m’ — k = s. Initially, M consists of
0’s. Array M is updated at each text position as follows (see also Fig. 4):

for j := m' downto 2 do M[j] := M[j — 1];
for j :=1 to m’ do M[j] := M[j] + B[d, jl;

In practice, the next value of M is evaluated using bit parallel operations.
Implementation details are discussed in the end of this section.

SAMPLES

. hood . . Bzzl . abddefghxfiTH1mnopdrs daBCDEFERTTRLMNOPQS . . .

~ 2O O

Fig.4. Computing the number of matching q-samples: (A) The three first elements
of array M are zero, because none of the samples ’rzz’, 'yyy’, and ’zzz’ starts an
approzimate match. (B) M[2] = 2, because samples ’ijk’ and 'rst’ belong to blocks Q;
and Q2. (C) The value of M[2] is shifted to M[3], corresponding to the new phase.
Since sample 'GHI’ belongs to block Qs, M[3] := M[2] + 1.

We are now ready to present our algorithm for approximate string matching.

Algorithm A.
preprocess P;
for i := 1 to m’ do M[i] := 0;
for j := h to n step h do
begin
d:=Tj—q+1...7}
Shift_add(M, B[d,]);
if M[m'] > m' — k then
DP(T[j—mh=2k—q+2...5+4m~(m'—1)h+k —q], P);

S.DOO\IO‘AO"»-RC»JMD—'\

end

In Algorithm A, procedure DP searches for approximate matches of pat-
tern P in text area T[f;...iy]. This procedure evaluates edit distance matrix

df0...(4%2 — iy + 1),0...m] using dynamic programming, with initial values
d[i,j]=0for j = 0 and d[i,j] = j for i = 0:

dli— 1,5 — 1] + 6pp, +i-1]=P[j)
dlt,j]=min¢ d[i - 1,5] +1

dli,j—1+1.
Above,

s _[0ifazb

@=b = 1 1 otherwise.

The necessary and sufficient condition for an approximate match of P ending
at text position ¢ is d[i — ¢y +1,m] < k.

A useful heuristic. Let us assume that Algorithm A has found a potential ap-
proximate match ending at text position j. Instead of checking this potential
match directly with dynamic programming, we backtrack (m’ — 1)h + [%J po-
sitions in the text and restart the search with new g-samples. The restarting is
permitted only if j — j, is large enough, where Jp is the previous backtracking
position, otherwise checking phase DP is called. This heuristic works well in
practice.

Implementation details. Index @ tells for each ¢g-gram of P the blocks containing
that g-gram. The index is constructed during the preprocessing of the pattern.

Let us consider the case s = 2. Because the sufficient number of positive
g-samples in a text area is then two, only two bits are needed for an element of
M. To calculate efficiently the next value for M, we use the shift-add technique.
Thus, two bits are also reserved for each block in an element of index Q.

4 Analysis

To analyze the efficiency of Algorithm A, it is essential to estimate its filtration
efficiency fa4. The filtration efficiency equals to the matching probability of the
mismatch problem.

In the following, we concentrate on the case s = 2. We assume that the
texts and patterns are generated according to the i.i.d. model, i.e., characters
are independently and identically distributed.

We denote by P, the probability that P’ matches, i.e.

P. = Pr(at least two samples match in T'[j...5 +m' — 1]).

We define:

Py(i) = Pr(d € @),
Po(i) = Pr(d¢ Qt) =1- Pl(i))

where d is a g-gram. Since Py(i) = Py(1) and Py(i) = Po(1) hold for each
1,1 < i< k+ 2, we define
P1 = Pl(l), P() - P()(].)
Using these definitions, we can reformulate P,:
P.=1- P+ — (k4 2)P, PFH, (2)
because the number of configurations with exactly one match is k + 2. Because
a block includes at most h + k different g-grams, we get an upper bound for P;:

p < EE
cd

By applying the formula of h we get:

m—k—q+1 +k

p < —k+2
< pr

< m—k—q+1+k%>+2k
- kct

< m+k2+k.

- ket

By setting
m+k?+k
ket
and noticing that Py = 1 — P; > p, we get a lower bound for 1 — P,:

1— Pc Zpk+2 + (k +2)P1pk+1 Zpk+2'

p=1

Since 1 — P, is the same as filtration efficiency f4, we have obtained the
following estimate for f4:

Theorem 4. Filtration efficiency fa of the Algorithm A for s =2 is
m+k%+k =3

ket

The bound of Theorem 4 is rough, and better estimates should be based on
formula (2).

Next we estimate the time complexity of our algorithm. Let us consider
separately the four major phases of the algorithm:

fa>(1-

1. Preprocessing of the pattern creates index), implemented as a hash table
of size m — ¢ + 1. The natural mapping of ¢-gram d to integer v(d) of base
¢ needs O(q) time using Horner’s rule. Hashing v(d) and handling possible
collisions can be made in constant time on the average. Since each subsequent
g-gram can be processed in O(1) time using its predecessor (cf. the Rabin-
Karp algorithm [KaR87]), the total time for hashing all the g-grams of the
pattern is O(m). Storing the locations of a g-gram of the pattern involves
evaluating 2k/h < 2k/q different blocks, and so the preprocessing time of
the whole pattern is O(mk/q).

2. Applying the shift-add approach needs O(k/w) time for a g-sample, where
w is the word size. A shift-add operation works in constant time for small
values of k.

3. The processing of ¢g-samples consists of two parts. Evaluating all the [n/h] g¢-
samples needs O(ng/h) time, assuming that efficient hashing is applied. Since
block profiles of g-samples are shift-added to M, the whole phase consumes
O(ﬂmqfu—?) time, where we have used the approximation h = £2(m/k), which
holds for k + ¢ < %m + 1 and s = O(k). For small k, the time complexity is
O(ngk/m).

4. Dynamic programming is applied only to the filtered g-sample locations.
Dynamic programming for a text of length ng requires O(nok) time. Based
on Theorem 3 and Theorem 4, we conclude that the time complexity of this
phase is O(%(1—fa)(m+h)k) = O(%%jk(m+h)k), where we have used
the approximation

m + k?

2
(TM)}HZ <1—(k+ 2)M

kel

The time for the processing of the ¢g-samples dominates over the other phases;
therefore, we can collect our results to the following theorem:

Theorem 5. Let w be the word size tn bits. The average time complezity of
Algorithm A for s = 2 is O(222) in a general case and O(Zqk) for k < w/2.

When ¢ = log, m, the time complexity is O(% log, m) or O(X2log, m). The
latter is the same as the average time complexity of the Chang-Lawler algorithm
and Takaoka’s algorithm.

5 Experimental Results

We have compared the filtration efliciency of our algorithm for s = 2 with that
of Takaoka’s algorithm.

The texts and patterns in the first test were generated according to the i.i.d.
model, i.e., the characters are independently and identically distributed. Table 1
shows the results for alphabet size ¢ = 40. Alg. A is the basic version of our
method and Alg A’ is augmented with the backtracking heuristic. The text is
500,000 characters long, pattern length m is 40, and error level k varies from
0 to 12, i.e., from 0% to 30% (where the relative error is defined as k/m). We
have counted the number of columns (i.e. the total width of the area) processed
in the dynamic programming phase to evaluate the filtration efficiency of the
algorithms.

As the results show, all the three algorithms lose their filtration power at error
levels over 30%. This is because a higher error level k¥ means a lower sampling
step h and, therefore, also smaller ¢. In particular, our algorithms reach ¢ = 1 at
error level 30% corresponding to & = 12 in Table 1 (Takaoka’s algorithm reaches

Table 1. Processed columns for ¢ = 40, m = 40, and n = 500, 000.

k[Takaoka Alg. A Alg. A’
0 440 58 58
2| 1,496 65 54
4| 2,448 65 56
6| 4,056 71 65
8| 5,996 83 69
9| 191,737 21,356 440
10| 261,605 29,729 1,362

11{ 251,332 59,746 5,052
12| 272,392 500,000 500,000

g = 1 at £ = 13). A sharp increase in the number of columns is characteristic
for these algorithms, when h and ¢ approach to one.

The optimal error level for these algorithms seems to be at about 0-20%. For
these error levels, Takaoka’s method evaluates under 1.2% of the columns; our
algorithms do not examine more than 0.02% of the text columns. For the error
levels 22.5-27.5%, Algorithm A’ still preserves its efficiency while evaluating
at most 1% of the columns, while Takaoka’s method evaluates 38-50% of the
columns.

Our preliminary implementations show that the number of evaluated columns
is reflected also in the execution time of the algorithms. The difference between
Takaoka’s algorithm and Algorithm A’ is very clear at the error levels of 22.5—-
27.5%: our algorithm is about four times faster.

Table 2. Processed columns for an FEnglish text, n = 492,459.

m k| Takaoka Alg. A’
4 1| 441,591 193,623
8 1| 71,650 850
8 2| 440,606 367,015
8 3| 492,366 488,726
16 1| 153,708 716
16 2| 120,713 1,455
16 3| 174,011 7,751
16 4| 333,872 491,958
16 5| 492,438 492427

Tests with other alphabets demonstrate similar behavior. Results from an-
other test with an English text are shown in Table 2.

6 Concluding Remarks

We have presented a sublinear filtration algorithm for approximate string match-
ing with k differences. Our experiments show that the new approach gives con-
siderably better filtration efficiency than Takaoka’s algorithm. It is possible to
apply the method also to static texts [SuT95].

The number of positive samples is a parameter of our method. Besides the
experiments reported for s = 2, we simulated the behavior of our algorithm for
values s > 2. The efficiency of our algorithm grows clearly when s increases. On
the other hand, an increase in s decreases h and ¢, and the shift-add operation
gets slower. The relationships between these parameters determine the limits of
the applicability of our method.

One might expect that our algorithm for s = 1 would be the same as
Takaoka’s algorithm, but that is not the case. The speed and the filtration effi-
ciency of these algorithms are almost the same, but their operations are different.

The idea of s positive samples can easily be incorporated with Takaoka’s
method. The filtration efficiency of the resulting algorithm lies between that of
Takaoka’s algorithm and our algorithm. However, this variation cannot outper-
form our approach, because the order of the g-grams is not taken into account.

Limited backtracking with a phase shift clearly improves the efficiency of our
method. It would be possible even to make several subsequent phase shifts after
a potential match. Every additional shift might improve the filtration, but on
the other hand, consumes more time. Finding an optimal value for the number of
shifts is left for further study. The idea of phases may also be applied in parallel
processing: h processors may be used in such a way that the ith processor starts
at text position g,

References

[BaG92] R. Baeza-Yates and G. Gonnet: A new approach to text searching. Com-
munications of ACM 35, 10 (1992), 74-82.

[ChL94] W. Chang and E. Lawler: Sublinear approximate string matching and bi-
ological applications. Algorithmica 12 (1994), 327-344.

[ChM94] W. Chang and T. Marr: approximate string matching and local similarity.
Combinatorial Pattern Matching, Proceedings of 5th Annual Symposium
(ed. M. Crochemore and D. Gusfield), Lecture Notes in Computer Science
807, Springer-Verlag, Berlin, 1994, 259-273.

[GaP89] Z. Galil and K. Park: An improved algorithm for approximate string match-
ing. Proceedings of 16th International Colloquium on Automata, Languages
and Programming (ed. M. Chytil et al.), Lecture Notes in Computer Science
372, Springer-Verlag, Berlin, 1989, 394-404.

[HoS94] N. Holsti and E. Sutinen: Approximate string matching using q-gram
places. Proc. Seventh Finnish Symposium on Computer Science (ed. M.
Penttonen), University of Joensuu, 1994, 23-32.

[GrL89] R. Grossi and F. Luccio: Simple and efficient string matching with k mis-
matches. Information Processing Letters 33 (1989), 113-120.

[(JTU91]

[KaR87]

[PeW93]

[SuT95]

[Tak94]

[TaU93]
[Ukk92]

[Ukks5]

[WuM92]

P. Jokinen, J. Tarhio, and E. Ukkonen: A comparison of approximate string
matching algorithms. Report A-1991-7, Department of Computer Science,
University of Helsinki, 1991.

R. Karp and M. Rabin: Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development 31 (1987), 249-260.

P. Pevzner and M. Waterman: A fast filtration algorithm for substring
matching problem. Combinatorial Pattern Matching, Proceedings of 4th
Annual Symposium (ed. A. Apostolico et al.), Lecture Notes in Computer
Science 684, Springer-Verlag, Berlin, 1993, 197-214.

E. Sutinen and J. Tarhio: Information retrieval based on q-gram locations.
In preparation.

T. Takaoka: Approximate pattern matching with samples. Proceedings
of ISAAC 94, Lecture Notes in Computer Science 834, Springer-Verlag,
Berlin, 1994, 234-242.

J. Tarhio and E. Ukkonen: Approximate Boyer-Moore string matching.
SIAM Journal on Computing 22, 2 (1993), 243-260.

E. Ukkonen: Approximate string matching with g-grams and maximal
matches. Theoretical Computer Science 92, 1 (1992), 191-211.

E. Ukkonen: Finding approximate patterns in strings. Journal of Algo-
rithms 6 (1985), 132-137. ‘

S. Wu and U. Manber: Fast text searching allowing errors. Communications
of ACM 35, 10 (1992), 83-91.

This article was processed using the IATpX macro package with LLNCS style

