
Bi-Memory Model for Guiding Exploration by Pre-existing Knowledge

Kary Främling KARY.FRAMLING@HUT.FI

Helsinki University of Technology, P.O. Box 5500, FI-02015 TKK, Finland.

Abstract

Reinforcement learning agents explore their
environment in order to collect reward that
allows them to learn what actions are good or
bad in what situations. The exploration is
performed using a policy that has to keep a
balance between getting more information about
the environment and exploiting what is already
known about it. This paper presents a method for
guiding exploration by pre-existing knowledge
expressed by e.g. heuristic rules. A dual memory
model is used where the value function is stored
in long-term memory while the heuristic rules
for guiding exploration act on the weights in a
short-term memory. Experimental results from
two “toy domains” illustrate that exploration is
significantly improved when guidance can be
provided by pre-existing knowledge.

1. Introduction

In supervised learning a “teacher” provides a set of
training samples that have usually been pre-processed in a
way that simplifies learning. Reinforcement learning (RL)
differs from supervised learning mainly because the RL
agent has to explore its environment by itself and collect
training samples. The agent takes actions following a
policy and observes received reward that it attempts to
maximize. Except for simple tasks, this exploration can be
long or even infeasible without any guidance. Different
ways of providing such guidance has been studied by
several researchers, e.g. Schaal (1997), Millán et al.
(2002) and Driessens & Džeroski (2004).

This paper presents a method for exploring the
environment using pre-existing knowledge expressed e.g.
by heuristic rules. It uses a dual memory model where a
so-called long-term memory is used for action-value
learning and a so-called short-term memory is used for
guiding action selection by heuristic rules. Experimental
results with simple heuristic rules illustrate that it is
possible to converge to a good policy with less

—————
 Appearing in Proceedings of the ICML'05 Workshop on Rich

Representations for Reinforcement Learning, Bonn, Germany, 2005.

Copyright 2005 by the author(s)/owner(s).

exploration than with some well-known methods. This
paper concentrates on episodic tasks, i.e. tasks with a pre-
defined terminal state, even though the methods are not
limited to such tasks.

After this introduction, the most relevant RL methods to
the scope of this paper are described in Section 2. Section
3 presents methods to shorten initial exploration and how
to combine them with methods presented in Section 2.
Section 4 shows comparative results for three different
tasks, followed by conclusions.

2. Reinforcement learning principles

Most existing RL methods try to learn a value function
that allows them to predict the sum of future reward from
any state s when following a given action selection policy
π. Value functions are either state-values (value of a state)
or action-values (value of an action in a given state).
Action-values are denoted Q(s,a), where a is an action.
The currently most popular RL methods are so-called
temporal difference (TD) methods (Sutton, 1988). Q-
learning (Watkins, 1989) is a TD control algorithm that
updates action-values according to

() ()),(,),(max, 111 aseasQasQrasQ tttt
a

ttt +++ 



 −+=∆ γβ

(1)

where Q(st,at) is the value of action a in state s at time t, β
is a learning rate, rt+1 is the immediate reward and γ is a
discount factor. The max-operator signifies the greatest
action-value in state st+1. et+1(s,a) is an eligibility trace that
allows rewards to be propagated back to preceding states
and actions. A replacing eligibility trace (Singh & Sutton,
1996) is calculated according to

()
()

t

tt
t

 ss

 ss se
se

=

≠





=+
 if

 if

1
1

γλ
, (2)

where λ is a trace decay parameter that together with the
γ determines how quickly rewards are propagated
backwards. Another common method for action-value
learning is SARSA (Rummery & Niranjan, 1994):

() ()[]),(,),(, 1111 aseasQasQrasQ tttttttt ++++ −+=∆ γβ (3)

The most complete overviews available on methods for
state-space exploration are (Thrun, 1992; Wiering, 1999).

Commonly used undirected exploration methods that do
not use any task-specific information are ε-greedy
exploration and Boltzmann action selection. ε-greedy
exploration selects the greedy action with probability
(1-ε) and an arbitrary action with probability ε using a
uniform probability distribution. Directed exploration
methods use task-specific knowledge for guiding
exploration in such a way that the state space would be
explored more efficiently. The action to be taken is
selected by maximizing an evaluation function that
combines action-values with exploration bonuses δn
weighted by factors K0 to Kk (Ratitch & Precup, 2003):

),(...),(),(),(110 asKasKasQKasN kkδδ +++= (4)

Counter-based methods use an exploration bonus that
directs exploration to less frequently visited states.
Recency-based exploration prefers least recently visited
states. Other directed exploration methods exist that use
statistics on value function variance or other indicators.
The same effect of preferring unexplored actions (and
states) mainly in the beginning of exploration can be
achieved by a technique called optimistic initial values
that uses initial value function estimates that are bigger
than the expected ones. A common implementation of
this technique is to initialize action values to zero and
give negative reward at every step (Thrun, 1992, p. 8).
This means that unused actions have greater value
estimates than used ones, so unused actions have a greater
probability to be selected in the beginning of exploration.

3. SLAP reinforcement and the BIMM network

This section describes the use of a long-term memory
(LTM) and short-term memory (STM)

1
 model for

combining action-value learning with heuristic rules that
guide exploration (Främling, 2003). LTM is used for
action-value learning while STM learning is used for
guiding state-space exploration by the SLAP (Set Lower
Action Priority) principle, described in sub-section 3.2. In
sub-section 3.3 we study the effect of different learning
parameters on the trade-off between rapid exploration and
converging towards a “good” policy.

3.1 Bi-Memory Model (BIMM)

The bi-memory model uses a short-term memory for
controlling exploration and a long-term memory for
learning the value function. Both memories are here
implemented as linear function approximators or Adalines
(Widrow & Hoff, 1960), but any function approximator
may be used for both STM and LTM. A linear function

—————
1 “Short-term memory” has been used in different contexts, e.g. for

storing the eligibility trace; for memorizing parts of the state history in

order to improve identification of “hidden states” (McCallum, 1995);

and for storing contextual clues to be used in near-future states (Bakker

2002). These differ from the STM used here.

approximator calculates action values as the weighted
sum of action neuron input values

∑
=

=
N

i

jiij wssa

1

,)((5)

where si is the value of state variable i, wi,j is the weight of
action neuron j for input i, aj is the output value of action
neuron j and N is the number of state variables. Weights
are typically stored in a two-dimensional matrix of size
M×N, where M is the number of actions. This
representation is identical to the lookup-table
representation usually used in discrete RL tasks but gives
the advantage of being able to handle continuous-valued
state variables directly. Adalines can be trained using the
Widrow-Hoff training rule

ijjji
new

ji saaww)'(,, −+= α (6)

where aj’ is the “target” value used in supervised learning.
α is a learning rate parameter that determines the step size
of weight modifications. Widrow-Hoff learning is a
gradient descent method that minimizes the root mean
square error (RMSE) between aj’ and aj samples. When
using BIMM, Adaline outputs are calculated according to

∑∑
==

+=
N

i

iji

N

i

ijij sstwKsltwKsa

1

,1

1

,0)((7)

where K0 and K1 are positive constants that control the
balance between exploration and exploitation. STM is
actually an exploration bonus whose influence on action
selection is determined by the value of K1 as in equation
(4). ltwi,j is the LTM weight and stwi,j is the STM weight
for action neuron j and input i. aj(s) is the estimated
action-value N(s,a) in equation (4). Both Q-learning and
SARSA can be used to update LTM weights by replacing
Q with ltw in equations (1) and (3).

3.2 Guiding exploration

Exploration bonuses affect action selection by increasing
or decreasing the probability of an action being selected
in a given state. If an action does not seem to be useful for
exploration in some state according to some pre-existing
knowledge, then make it less likely for that action to be
used in that state. Similarly, if an action seems to be good
in some state according to current rules, then make it
more likely to be used in that state. In the tests performed
in this paper only the first case is used, i.e. action
probabilities are only decreased by the set lower action
priority (SLAP) principle, where STM weights are
updated using the Widrow-Hoff update rule with the
target value

aj’(s)= amin(s) – margin (8)

where amin(s) is the smallest aj(s) value in state s. The
margin should have a “small” value (0.1 has been used in

all tests reported in this paper), which ensures that an
action that is repeatedly SLAPed will eventually have the
lowest action value. Only STM weights are modified by
the Widrow-Hoff rule, which becomes

ijjji
new

ji saastwstw)'(,, −+= α (9)

The new activation value is then

()

∑

∑∑∑

∑∑

∑∑

=

===

==

==

−+

=−++

=−++

=+=

N

i

ijjj

N

i

ijj

N

i

iji

N

i

iji

N

i

ijjjii

N

i

iji

N

i

i
new

N

i

iji
new
j

sKaaa

sKaasstwKsltwK

saastwsKsltwK

sstwKsltwKsa
ji

1

2
1

1

2
1

1

,1

1

,0

1

,1

1

,0

1

1

1

,0

)'(

)'(

)'(

)(
,

α

α

α

 (10)

where we can see that setting α to 1/(K1Σsi
2
) guarantees

that aj
new

 will become aj’ in state s after SLAPing action j.
Replacing α with α/(K1Σsi

2
) in equation (9) gives a

generalization for BIMM of the well-known Normalized
Least Mean Squares (NLMS) method

∑
=

−+=
N

i

iijjji
new

ji sKsaastwstw

1

2
1,,)'(α (11)

that reduces the error (aj’ – aj) exactly by the ratio given
by α, which makes it easier to select a good value for α.
For instance, if α = 1 in equation (11) the SLAPed action
will directly have the lowest aj(s) value for state s so it
will not be used again until all other possible actions have
been tested in the same state. This is especially useful in
deterministic tasks. In stochastic tasks α should be
inferior to one because even the optimal action may not
always be successful, so immediately making its action-
value the lowest would not be a good idea. As long as the
value of amin(s) doesn’t change, the value aj’(s) remains
the same for all j. This is true until aj

new
(s) becomes lower

than the current amin(s) for some j. Therefore, action
values slowly go towards minus infinity when using
SLAP an infinite number of times

2
.

A general algorithm for using SLAP in a learning task is
given in Figure 1. Especially when using SARSA or other
on-policy methods for action-value updates, STM weights
should be updated before updating the action-values,
otherwise the changes in STM weights might modify the
action selection for the next state. It is also worth pointing
out that the SLAP update rules do not include a time
variable t as for Q-learning and SARSA, so SLAP can be

—————
2 Setting aj’(s)=amax(s) + margin would increase weights in the same

way that SLAP decreases them but this has not been useful for the

experimental tasks in this paper.

used asynchronously with action-value updates. In fact,
SLAP can be used for any state-action pair at any time
independently of the current state and the current action
selected.

Initialize parameters
REPEAT (for each episode)

 s ← initial state of episode

 REPEAT (for each step in episode)

 a ← action given by π for s
 Take action a, observe next state s’
 SLAP “undesired” actions
 Update action-value function in LTM

 s ← s’

Figure 1. General algorithm for using SLAP in typical RL task.

3.3 Increasing exploration

As shown by the experimental tasks in section 4, it can be
easy to identify heuristic rules that make exploration
faster. However, if these rules do not also give sufficient
exploration of the state space, then it has to be provided
by other means. STM weights are reinitialized before
starting a new episode and can have a great impact on the
way in which the state space is explored. Initializing STM
weights to random values and using a “high” value for K1
is one way of increasing exploration. In all tests reported
here, STM weights have been initialized to random values
in the interval [0,1) while LTM weights are initialized to
zero. Therefore actions will initially be selected in a
random order independently of the value of K1 in equation
(7) as long as LTM weights remain zero. When LTM
values become non-zero due to action-value learning, the
amount of randomness in action selection depends both
on STM and LTM weights.

Undirected exploration methods (e.g. ε-greedy,
Boltzmann) can also be used to increase exploration.
Driessens and Džeroski (2004) alternated guided and
unguided episodes for the same purpose, where hand-
coded rules, human operators or other pre-existing
knowledge provided guidance.

4. Experimental results

This section compares methods presented in the previous
sections on two different tasks: 1) semi-MDP maze world
and 2) mountain-car. Exploration methods compared are:
1) Q/SARSA: ε-greedy exploration; 2) CTRB: counter-
based exploration 3) OIV: optimistic initial values and 4)
BIMM. Q/SARSA, CTRB and BIMM use zero initial Q-
values, r = 1 at terminal state and r = 0 for all other states.
OIV used zero initial Q-values, r = 0 at goal and r = -1 for
all other state transitions. Constant learning parameters
are used in order to simplify the choice of parameter
values and for reasons of comparability.

4.1 Maze with transition delays

Semi-Markov Decision Processes (SMDP) may include
continuous time (Bradtke and Duff, 1995). This signifies
that the transition time from one state to another depends
on a probability distribution Fxy. Here we introduce state
transition time by the notion of “corridors” in a maze, i.e.
states with only two actions that represent opposite
directions. When in a corridor, the agent continues
forward until it reaches a non-corridor state. The maze
world is of size 20x20 (Figure 2), where 10 doors have
been opened in addition to the initial unique solution.
Both deterministic and stochastic state transitions are
used. The stochastic state transition rates used are 0.2 and
0.5, which indicate the probability of another direction
being taken than the intended one.

Figure 2. Maze with 10 supplementary “doors” opened in the

walls in addition to the initial unique route. Agent in start

position, goal position in lower left corner.

Q-learning without eligibility trace is used for action-
value learning. Learning parameters are indicated in Table
1. The counter-based exploration bonus in equation (4) is
implemented as








=−

>−
−

−
−

=

0)()(if0

0)()(if
)()(

)(),(
1

),(

minmax

minmax
minmax

min

1

scntscnt

scntscnt
scntscnt

scntascnt

asδ (12)

where cnt(s,a) is the counter for action a in state s and
cnt(s)min and cnt(s)max are the smallest and greatest counter
values for actions in state s. Counter values are reset after
every episode. For BIMM agents, SLAP was used

according to the following rules when entering a new
state and before performing the next action: 1) SLAP the
“inverse” action and 2) if the new state is already visited
during the episode, SLAP action with the biggest value
aj(s) in equation (7) for the new state. The rules are
applied in the order indicated, so with α = 1 the action
taken at the previous visit becomes the last one in the
action ranking given by equation (7).

All agents performed 250 episodes. Actions were selected
greedily after 200 episodes in order to compare how well
the value function was learned by all methods on an equal
basis. This signifies that ε was set to zero for all agents as
well as K1 for BIMM and CTRB. Figure 3 shows that
BIMM converges towards a good policy after much less
exploration than Q- and CTRB-agents. The BIMM graph
is close to the graph of the OIV agent but OIV converges
very slowly. The greater the stochastic state transition
rate, the slower the OIV agent converges. This is probably
due to the cycles that occur with stochastic state
transitions, which cause negative reward to be given even
to the optimal action.

Table 1. Parameter values used in grid world tests. For BIMM

K1 = 0.1 in deterministic task and K1 = 10-6 in stochastic tasks.

γ = 0.95 for all except OIV. Not indicated parameters are zero.

Agent Q CTRB OIV BIMM

Grid world β ε β K1 β γ α β

Deterministic 1 0.1 1 0.1 1 1 1 1

Stoch. 0.2 0.1 0.1 0.5 0.01 0.5 0.95 0.2 0.5

Stoch. 0.5 0.1 0.1 0.5 0.001 0.5 0.95 0.1 0.5

Table 2 gives numeric comparisons for the performance
of the four methods. BIMM agents achieve a better stable
policy than the others in all tests as indicated by the third
column. The total number of steps is also clearly lower
than for the other agents. Since the training parameters
often represent a compromise between how good the
converged policy is and how much exploration is needed,
the fact that BIMM has the best performance in both
indicate its superiority in this task. Also, even though the
advantage of BIMM in the beginning of exploration
decreases with an increasing stochastic state transition
rate (second column of Table 2), this is compensated by
an improved “converged” policy compared with the other
agents.

Table 2. Results for 20x20 maze with ten extra doors in the order Q/CTRB/OIV/BIMM. The third column indicates the average

number of steps for the “stable” policy as average value of episodes 241-250.

Stoch. trans. rate Steps on first episode Steps with converged policy Total number of steps

Deterministic 7450/4650/1760/502 49.0/48.0/48.0/48.0 134000/62800/27800/21400

0.2 7300/6200/2100/1420 64.4/69.1/69.2/60.3 145000/96000/57400/41600

0.5 9980/7840/3900/4170 116/196/132/102 152000/168000/105000/103000

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000
Deterministic maze with 10 extra doors, #agent runs: 50

episode number

#
s
te

p
s

Q
CTRB
OIV
BIMM

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000
Stochastic (0.2) maze with 10 extra doors, #agent runs: 50

episode number

#
s
te

p
s

Q
CTRB
OIV
BIMM

0 20 40 60 80 100

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Stochastic (0.5) maze with 10 extra doors, #agent runs: 50

episode number

#
s
te

p
s

Q
CTRB
OIV
BIMM

Figure 3. Maze results as average number of steps per episode. Grid size, stochastic transition rate and the number of agent runs used

for calculating the average number of steps is indicated at the top of each graph.

4.2 Mountain-Car

The description of this task is similar to that in (Singh &
Sutton, 1996) and (Randløv, 2000). The mountain-car
task has two continuous state variables: the position xt and
the velocity vt. At the beginning of each trial these are
initialized randomly, uniformly from the range
x ∈ [-1.2,0.5] and v ∈ [-0.07,0.07]. The altitude is sin(3x).
The agent chooses from actions at∈{+1,0,-1} that
correspond to forward thrust, no thrust and reverse. The
physics of the task are:

())3cos(001.0bound1 tttt xgavv ++=+

and

}2.1,{max 11 −+= ++ ttt vxx

where g = 0.0025 is the force of gravity and the bound
operation places the variable within its allowed range. If
xt+1 is clipped by the max-operator, then vt+1 is reset to 0.
The terminal state is any position with xt+1 > 0.5. The
continuous state space is discretized by 8 non-overlapping
intervals for each variable, which gives a total of 64
states. Episodes were limited to 1 000 000 steps.

As in most previous work on this task, the SARSA(λ)
learning algorithm with replacing eligibility traces was
used for action-value learning. Parameter values are:
SARSA: learning rate β = 0.1, discount rate γ = 0.9,
λ = 0.95, ε = 0.1; OIV: learning rate β = 0.1, discount rate
γ = 1.0, λ = 0.9; and BIMM: learning rate β = 0.1,
discount rate γ = 0.9, λ = 0.95, K1 = 0.1, α = 1.0. The
counter-based method was not used in this task. With the
continuous-valued state-variables it often takes several
steps before changing state in the discretized state space,
so an ordinary counter-based exploration changes the
used action too rapidly to allow the agent to explore
efficiently. This is also true for the heuristic rules used by
BIMM in the maze task. It turns out that it is difficult to
find good heuristics for the mountain-car task, as noticed
by Randløv (2000) who tried to find a good reward
shaping function.

The heuristic rules for using SLAP are 1) SLAP if sign of
velocity is different from the sign of the action’s thrust

and 2) SLAP if velocity is positive and action is zero
thrust. The second rule makes exploration slightly faster,
but is not of much practical significance. These rules
actually implement a controller that is at least nearly
optimal for the task at hand, so one could ask what is the
point of using a learning controller if we already have a
good one? First of all, the initial controller is a static
closed-loop controller while learning will give an
adaptive open-loop controller that may be able to
compensate for errors or calibration drift in real-world
applications (see e.g. Främling (2004), for such an
adaptive controller and Millán et al. (2002), where rules
are used together with a learning controller). The initial
controller may also be sub-optimal and incomplete, i.e.
not cover the whole state space. Finally, the goal of this
paper is to show that the BIMM and SLAP can be used
for guiding exploration rather than evaluate the goodness
of the heuristic rules.

0 50 100 150 200
10

1

10
2

10
3

10
4

10
5 Mountain Car, #agent runs: 50

episode number

#
s
te

p
s

SARSA
OIV
BIMM

Figure 4. Average number of steps as a function of episode from

50 runs. The peaks are due to infinite episodes, limited to

1 000 000 steps. Note the logarithmical scale on the y-axis.

The results in Figure 4 are consistent with those in (Singh
& Sutton, 1996) and (Randløv, 2000). SARSA uses an
average of 38000 steps for the first episode, OIV uses
1700 steps and BIMM uses 73 steps. The simulations
were run for 10000 episodes with greedy exploration from
9000 episodes onwards. The average numbers of steps for

the last 100 episodes (9901-10000) were 81.2 for SARSA,
78.6 for OIV and 55.6 for BIMM. The total numbers of
steps for episodes 1 - 10000 are 1 140 000 for SARSA,
830 000 for OIV and 554 000 for BIMM so the BIMM
agent clearly learned the action-value function better and
with less exploration.

5. Conclusions

The results show that applying pre-existing knowledge
through heuristic rules and the SLAP and BIMM
mechanisms can make exploration more efficient both in
deterministic and stochastic tasks, as well as in tasks
involving continuous-valued state variables. For the
heuristic rules used here, it is also apparent that benefits
in exploration do not reduce the probability of learning a
good value function. One big difference between BIMM
and existing methods for improving exploration is that
BIMM agents only use their own internal information
about the task at hand. This makes them interesting
compared with methods like reward shaping, which
usually require some a priori knowledge about the
environment, such as where the goal is located, the
stochastic level of the environment or the number of sub-
goals to reach.

Even though only “toy tasks” are used in this paper, it
should be possible to generalize the results to many other
RL tasks. This should be the case especially for tasks
where state generalization is necessary due the number of
states. Since SLAP and BIMM use standard ANN
structures and learning rules, they are also applicable to
tasks involving continuous-valued state variables and
state classifiers. Such tasks are a subject of current and
future research, where explosion of the state-space size
due to state variable discretization is a problem.

References

Bakker, B. (2002). Reinforcement Learning with Long
Short-Term Memory. In T. G. Dietterich, S. Becker, and
Z. Ghahramani (eds.), Advances in Neural Information
Processing Systems 14, MIT Press, Cambridge, MA.
1475-1482.

Bradtke, S.J., Duff, M.O. (1995). Reinforcement Learning
Methods for Continuous-Time Markov Decision
Problems. In G. Tesauro, D. Touretzky, T. Leen, (eds.),
Advances in Neural Information Processing Systems 7,
Morgan-Kaufmann. 393-400.

Driessens, K., Džeroski, S. (2004). Integrating Guidance
into Relational Reinforcement Learning. Machine
Learning, Vol. 57. 271–304.

Främling, K. (2003). Guiding Initial State-space
Exploration by Action Ranking and Episodic Memory.
Laboratory of Information Processing Science Series B,
TKO-B 152/03, Helsinki University of Technology.
http://www.cs.hut.fi/Publications/Reports/B152.pdf.

Främling, K. (2004). Scaled gradient descent learning rate
- Reinforcement learning with light-seeking robot.
Proceedings of ICINCO'2004 conference, 25-28 August
2004, Setúbal, Spain. 3-11.

McCallum, A. R. (1995). Instance-Based State
Identification for Reinforcement Learning. In G.
Tesauro, D. Touretzky, T. Leen (eds.) Advances in
Neural Information Processing Systems 7, MIT Press,
1995. 377-384.

Millán, J.R., Posenato, D., Dedieu, E. (2002).
Continuous-Action Q-Learning. Machine Learning,
Vol. 49. 247-265.

Randløv, J. (2000). Shaping in Reinforcement Learning
by Changing the Physics of the Problem. In Proc. of
ICML-2000 conference. 767-774.

Ratitch, B., Precup, D. (2003). Using MDP
Characteristics to Guide Exploration in Reinforcement
Learning. In: Lecture Notes in Computer Science, Vol.
2837 (Proceedings of ECML-2003 Conference),
Springer-Verlag, Heidelberg. 313-324.

Rummery, G. A., Niranjan, M. (1994). On-Line Q-
Learning Using Connectionist Systems. Tech. Rep.
CUED/F-INFENG/TR 166, Cambridge Univ.
Engineering Department. 20 p.

Schaal, S. (1997). Learning from demonstration. In M.
Mozer, M. Jordan, T. Petsche (eds), Advances in Neural
Information Processing Systems 9, MIT Press. 1040-
1046.

Singh, S.P., Sutton, R.S. (1996). Reinforcement learning
with replacing eligibility traces. Machine Learning, Vol.
22. 123-158.

Sutton, R.S. (1988). Learning to predict by the method of
temporal differences. Machine Learning, Vol. 3. 9-44.

Thrun, S.B. (1992). The role of exploration in learning
control. In DA White & DA Sofge, (eds.), Handbook of
Intelligent Control: Neural, Fuzzy and Adaptive
Approaches. Van Nostrand Reinhold, New York.

Watkins, C. J. C. H. (1989). Learning from Delayed
Rewards. Ph.D. thesis, Cambridge University.

Widrow, B., Hoff, M.E. (1960). Adaptive switching
circuits. 1960 WESCON Convention record Part IV,
Institute of Radio Engineers, New York. 96-104.

Wiering, M. (1999). Explorations in Efficient
Reinforcement Learning. Ph.D. thesis, University of
Amsterdam. 218 p.

