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Abstract
     

Reinforcement learning agents explore their 
environment in order to collect reward that 
allows them to learn what actions are good or 
bad in what situations. The exploration is 
performed using a policy that has to keep a 
balance between getting more information about 
the environment and exploiting what is already 
known about it. This paper presents a method for 
guiding exploration by pre-existing knowledge 
expressed by e.g. heuristic rules. A dual memory 
model is used where the value function is stored 
in long-term memory while the heuristic rules 
for guiding exploration act on the weights in a 
short-term memory. Experimental results from 
two “toy domains” illustrate that exploration is 
significantly improved when guidance can be 
provided by pre-existing knowledge.  

1.  Introduction 

In supervised learning a “teacher” provides a set of 
training samples that have usually been pre-processed in a 
way that simplifies learning. Reinforcement learning (RL) 
differs from supervised learning mainly because the RL 
agent has to explore its environment by itself and collect 
training samples. The agent takes actions following a 
policy and observes received reward that it attempts to 
maximize. Except for simple tasks, this exploration can be 
long or even infeasible without any guidance. Different 
ways of providing such guidance has been studied by 
several researchers, e.g. Schaal (1997), Millán et al. 
(2002) and Driessens & Džeroski (2004). 

This paper presents a method for exploring the 
environment using pre-existing knowledge expressed e.g. 
by heuristic rules. It uses a dual memory model where a 
so-called long-term memory is used for action-value 
learning and a so-called short-term memory is used for 
guiding action selection by heuristic rules. Experimental 
results with simple heuristic rules illustrate that it is 
possible to converge to a good policy with less 
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exploration than with some well-known methods. This 
paper concentrates on episodic tasks, i.e. tasks with a pre-
defined terminal state, even though the methods are not 
limited to such tasks.  

After this introduction, the most relevant RL methods to 
the scope of this paper are described in Section 2. Section 
3 presents methods to shorten initial exploration and how 
to combine them with methods presented in Section 2. 
Section 4 shows comparative results for three different 
tasks, followed by conclusions. 

2.  Reinforcement learning principles 

Most existing RL methods try to learn a value function 
that allows them to predict the sum of future reward from 
any state s when following a given action selection policy 
π. Value functions are either state-values (value of a state) 
or action-values (value of an action in a given state). 
Action-values are denoted Q(s,a), where a is an action. 
The currently most popular RL methods are so-called 
temporal difference (TD) methods (Sutton, 1988). Q-
learning (Watkins, 1989) is a TD control algorithm that 
updates action-values according to  
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where Q(st,at) is the value of action a in state s at time t, β 
is a learning rate, rt+1 is the immediate reward and γ is a 
discount factor. The max-operator signifies the greatest 
action-value in state st+1. et+1(s,a) is an eligibility trace that 
allows rewards to be propagated back to preceding states 
and actions. A replacing eligibility trace (Singh & Sutton, 
1996) is calculated according to 
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where λ is a trace decay parameter that together with the 
γ determines how quickly rewards are propagated 
backwards. Another common method for action-value 
learning is SARSA (Rummery & Niranjan, 1994):  
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The most complete overviews available on methods for 
state-space exploration are (Thrun, 1992; Wiering, 1999). 



 

 

Commonly used undirected exploration methods that do 
not use any task-specific information are ε-greedy 
exploration and Boltzmann action selection. ε-greedy 
exploration selects the greedy action with probability  
(1-ε) and an arbitrary action with probability ε using a 
uniform probability distribution. Directed exploration 
methods use task-specific knowledge for guiding 
exploration in such a way that the state space would be 
explored more efficiently. The action to be taken is 
selected by maximizing an evaluation function that 
combines action-values with exploration bonuses δn 
weighted by factors K0 to Kk (Ratitch & Precup, 2003): 
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Counter-based methods use an exploration bonus that 
directs exploration to less frequently visited states. 
Recency-based exploration prefers least recently visited 
states. Other directed exploration methods exist that use 
statistics on value function variance or other indicators. 
The same effect of preferring unexplored actions (and 
states) mainly in the beginning of exploration can be 
achieved by a technique called optimistic initial values 
that uses initial value function estimates that are bigger 
than the expected ones.  A common implementation of 
this technique is to initialize action values to zero and 
give negative reward at every step (Thrun, 1992, p. 8). 
This means that unused actions have greater value 
estimates than used ones, so unused actions have a greater 
probability to be selected in the beginning of exploration.  

3.  SLAP reinforcement and the BIMM network 

This section describes the use of a long-term memory 
(LTM) and short-term memory (STM)

1
 model for 

combining action-value learning with heuristic rules that 
guide exploration (Främling, 2003). LTM is used for 
action-value learning while STM learning is used for 
guiding state-space exploration by the SLAP (Set Lower 
Action Priority) principle, described in sub-section 3.2. In 
sub-section 3.3 we study the effect of different learning 
parameters on the trade-off between rapid exploration and 
converging towards a “good” policy. 

3.1  Bi-Memory Model (BIMM) 

The bi-memory model uses a short-term memory for 
controlling exploration and a long-term memory for 
learning the value function. Both memories are here 
implemented as linear function approximators or Adalines 
(Widrow & Hoff, 1960), but any function approximator 
may be used for both STM and LTM. A linear function 
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and for storing contextual clues to be used in near-future states (Bakker 

2002). These differ from the STM used here. 

approximator calculates action values as the weighted 
sum of action neuron input values 
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where si is the value of state variable i, wi,j is the weight of 
action neuron j for input i, aj is the output value of action 
neuron j and N is the number of state variables. Weights 
are typically stored in a two-dimensional matrix of size 
M×N, where M is the number of actions. This 
representation is identical to the lookup-table 
representation usually used in discrete RL tasks but gives 
the advantage of being able to handle continuous-valued 
state variables directly. Adalines can be trained using the 
Widrow-Hoff training rule 
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where aj’ is the “target” value used in supervised learning. 
α is a learning rate parameter that determines the step size 
of weight modifications. Widrow-Hoff learning is a 
gradient descent method that minimizes the root mean 
square error (RMSE) between aj’ and aj samples. When 
using BIMM, Adaline outputs are calculated according to  
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where K0 and K1 are positive constants that control the 
balance between exploration and exploitation. STM is 
actually an exploration bonus whose influence on action 
selection is determined by the value of K1 as in equation 
(4). ltwi,j is the LTM weight and stwi,j is the STM weight 
for action neuron j and input i. aj(s) is the estimated 
action-value N(s,a) in equation (4). Both Q-learning and 
SARSA can be used to update LTM weights by replacing 
Q with ltw in equations (1) and (3).  

3.2  Guiding exploration  

Exploration bonuses affect action selection by increasing 
or decreasing the probability of an action being selected 
in a given state. If an action does not seem to be useful for 
exploration in some state according to some pre-existing 
knowledge, then make it less likely for that action to be 
used in that state. Similarly, if an action seems to be good 
in some state according to current rules, then make it 
more likely to be used in that state. In the tests performed 
in this paper only the first case is used, i.e. action 
probabilities are only decreased by the set lower action 
priority (SLAP) principle, where STM weights are 
updated using the Widrow-Hoff update rule with the 
target value  

aj’(s)= amin(s) – margin (8)

where amin(s) is the smallest aj(s) value in state s. The 
margin should have a “small” value (0.1 has been used in 



 

 

all tests reported in this paper), which ensures that an 
action that is repeatedly SLAPed will eventually have the 
lowest action value. Only STM weights are modified by 
the Widrow-Hoff rule, which becomes  
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The new activation value is then 
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where we can see that setting α to 1/(K1Σsi
2
) guarantees 

that aj
new

 will become aj’ in state s after SLAPing action j. 
Replacing α with α/(K1Σsi

2
)  in equation (9) gives a 

generalization for BIMM of the well-known Normalized 
Least Mean Squares (NLMS) method 
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that reduces the error (aj’ – aj) exactly by the ratio given 
by α, which makes it easier to select a good value for α. 
For instance, if α = 1 in equation (11) the SLAPed action 
will directly have the lowest aj(s) value for state s so it 
will not be used again until all other possible actions have 
been tested in the same state.  This is especially useful in 
deterministic tasks. In stochastic tasks α should be 
inferior to one because even the optimal action may not 
always be successful, so immediately making its action-
value the lowest would not be a good idea. As long as the 
value of amin(s) doesn’t change, the value aj’(s) remains 
the same for all j. This is true until aj

new
(s) becomes lower 

than the current amin(s) for some j. Therefore, action 
values slowly go towards minus infinity when using 
SLAP an infinite number of times

2
.  

A general algorithm for using SLAP in a learning task is 
given in Figure 1. Especially when using SARSA or other 
on-policy methods for action-value updates, STM weights 
should be updated before updating the action-values, 
otherwise the changes in STM weights might modify the 
action selection for the next state. It is also worth pointing 
out that the SLAP update rules do not include a time 
variable t as for Q-learning and SARSA, so SLAP can be 

————— 
2 Setting aj’(s)=amax(s) + margin would increase weights in the same 

way that SLAP decreases them but this has not been useful for the 

experimental tasks in this paper. 

used asynchronously with action-value updates. In fact, 
SLAP can be used for any state-action pair at any time 
independently of the current state and the current action 
selected.  

Initialize parameters 
REPEAT (for each episode) 

  s ← initial state of episode 

  REPEAT (for each step in episode) 

    a  ←  action given by π for s  
    Take action a, observe next state s’ 
    SLAP “undesired” actions 
    Update action-value function in LTM 

    s ← s’ 

Figure 1. General algorithm for using SLAP in typical RL task. 

3.3  Increasing exploration 

As shown by the experimental tasks in section 4, it can be 
easy to identify heuristic rules that make exploration 
faster. However, if these rules do not also give sufficient 
exploration of the state space, then it has to be provided 
by other means. STM weights are reinitialized before 
starting a new episode and can have a great impact on the 
way in which the state space is explored. Initializing STM 
weights to random values and using a “high” value for K1 
is one way of increasing exploration. In all tests reported 
here, STM weights have been initialized to random values 
in the interval [0,1) while LTM weights are initialized to 
zero. Therefore actions will initially be selected in a 
random order independently of the value of K1 in equation 
(7) as long as LTM weights remain zero. When LTM 
values become non-zero due to action-value learning, the 
amount of randomness in action selection depends both 
on STM and LTM weights.   

Undirected exploration methods (e.g. ε-greedy, 
Boltzmann) can also be used to increase exploration. 
Driessens and Džeroski (2004) alternated guided and 
unguided episodes for the same purpose, where hand-
coded rules, human operators or other pre-existing 
knowledge provided guidance.  

4.  Experimental results 

This section compares methods presented in the previous 
sections on two different tasks: 1) semi-MDP maze world 
and 2) mountain-car. Exploration methods compared are: 
1) Q/SARSA: ε-greedy exploration; 2) CTRB: counter-
based exploration 3) OIV: optimistic initial values and 4) 
BIMM. Q/SARSA, CTRB and BIMM use zero initial Q-
values, r = 1 at terminal state and r = 0 for all other states. 
OIV used zero initial Q-values, r = 0 at goal and r = -1 for 
all other state transitions. Constant learning parameters 
are used in order to simplify the choice of parameter 
values and for reasons of comparability. 



 

 

4.1  Maze with transition delays 

Semi-Markov Decision Processes (SMDP) may include 
continuous time (Bradtke and Duff, 1995).  This signifies 
that the transition time from one state to another depends 
on a probability distribution Fxy. Here we introduce state 
transition time by the notion of “corridors” in a maze, i.e. 
states with only two actions that represent opposite 
directions. When in a corridor, the agent continues 
forward until it reaches a non-corridor state. The maze 
world is of size 20x20 (Figure 2), where 10 doors have 
been opened in addition to the initial unique solution. 
Both deterministic and stochastic state transitions are 
used. The stochastic state transition rates used are 0.2 and 
0.5, which indicate the probability of another direction 
being taken than the intended one. 

 
Figure 2. Maze with 10 supplementary “doors” opened in the 

walls in addition to the initial unique route. Agent in start 

position, goal position in lower left corner. 

Q-learning without eligibility trace is used for action-
value learning. Learning parameters are indicated in Table 
1. The counter-based exploration bonus in equation (4) is 
implemented as  
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where cnt(s,a) is the counter for action a in state s and 
cnt(s)min and cnt(s)max are the smallest and greatest counter 
values for actions in state s. Counter values are reset after 
every episode. For BIMM agents, SLAP was used 

according to the following rules when entering a new 
state and before performing the next action: 1) SLAP the 
“inverse” action and 2) if the new state is already visited 
during the episode, SLAP action with the biggest value 
aj(s) in equation (7) for the new state. The rules are 
applied in the order indicated, so with α = 1 the action 
taken at the previous visit becomes the last one in the 
action ranking given by equation (7). 

All agents performed 250 episodes. Actions were selected 
greedily after 200 episodes in order to compare how well 
the value function was learned by all methods on an equal 
basis. This signifies that ε was set to zero for all agents as 
well as K1 for BIMM and CTRB. Figure 3 shows that 
BIMM converges towards a good policy after much less 
exploration than Q- and CTRB-agents. The BIMM graph 
is close to the graph of the OIV agent but OIV converges 
very slowly. The greater the stochastic state transition 
rate, the slower the OIV agent converges. This is probably 
due to the cycles that occur with stochastic state 
transitions, which cause negative reward to be given even 
to the optimal action. 

Table 1. Parameter values used in grid world tests. For BIMM 

K1 = 0.1 in deterministic task and K1 = 10-6 in stochastic tasks. 

γ = 0.95 for all except OIV. Not indicated parameters are zero. 

Agent  Q CTRB  OIV  BIMM 

Grid world β ε β K1 β γ α β 

Deterministic 1 0.1 1 0.1 1 1 1 1 

Stoch. 0.2  0.1 0.1 0.5 0.01 0.5 0.95 0.2 0.5 

Stoch. 0.5  0.1 0.1 0.5 0.001 0.5 0.95 0.1 0.5 

 

Table 2 gives numeric comparisons for the performance 
of the four methods. BIMM agents achieve a better stable 
policy than the others in all tests as indicated by the third 
column. The total number of steps is also clearly lower 
than for the other agents. Since the training parameters 
often represent a compromise between how good the 
converged policy is and how much exploration is needed, 
the fact that BIMM has the best performance in both 
indicate its superiority in this task. Also, even though the 
advantage of BIMM in the beginning of exploration 
decreases with an increasing stochastic state transition 
rate (second column of Table 2), this is compensated by 
an improved “converged” policy compared with the other 
agents. 

Table 2. Results for 20x20 maze with ten extra doors in the order Q/CTRB/OIV/BIMM. The third column indicates the average 

number of steps for the “stable” policy as average value of episodes 241-250. 

Stoch. trans. rate Steps on first episode Steps with converged policy Total number of steps 

Deterministic 7450/4650/1760/502 49.0/48.0/48.0/48.0 134000/62800/27800/21400 

0.2 7300/6200/2100/1420 64.4/69.1/69.2/60.3 145000/96000/57400/41600 

0.5 9980/7840/3900/4170 116/196/132/102 152000/168000/105000/103000 

  



 

 

 

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000
Deterministic maze with 10 extra doors, #agent runs: 50

episode number

#
s
te

p
s

Q   
CTRB
OIV 
BIMM

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000
Stochastic (0.2) maze with 10 extra doors, #agent runs: 50

episode number

#
s
te

p
s

Q   
CTRB
OIV 
BIMM

 
0 20 40 60 80 100

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Stochastic (0.5) maze with 10 extra doors, #agent runs: 50

episode number

#
s
te

p
s

Q   
CTRB
OIV 
BIMM

Figure 3. Maze results as average number of steps per episode. Grid size, stochastic transition rate and the number of agent runs used 

for calculating the average number of steps is indicated at the top of each graph.  

4.2  Mountain-Car 

The description of this task is similar to that in (Singh & 
Sutton, 1996) and (Randløv, 2000). The mountain-car 
task has two continuous state variables: the position xt and 
the velocity vt. At the beginning of each trial these are 
initialized randomly, uniformly from the range  
x ∈ [-1.2,0.5] and v ∈ [-0.07,0.07]. The altitude is sin(3x). 
The agent chooses from actions at∈{+1,0,-1} that 
correspond to forward thrust, no thrust and reverse. The 
physics of the task are:  

( ))3cos(001.0bound1 tttt xgavv ++=+  

and  

}2.1,{max 11 −+= ++ ttt vxx  

where g = 0.0025 is the force of gravity and the bound 
operation places the variable within its allowed range. If 
xt+1 is clipped by the max-operator, then vt+1 is reset to 0. 
The terminal state is any position with xt+1 > 0.5. The 
continuous state space is discretized by 8 non-overlapping 
intervals for each variable, which gives a total of 64 
states. Episodes were limited to 1 000 000 steps.  

As in most previous work on this task, the SARSA(λ) 
learning algorithm with replacing eligibility traces was 
used for action-value learning. Parameter values are: 
SARSA: learning rate β = 0.1, discount rate γ = 0.9, 
λ = 0.95, ε = 0.1; OIV: learning rate β = 0.1, discount rate 
γ = 1.0, λ = 0.9; and BIMM: learning rate β = 0.1, 
discount rate γ = 0.9, λ = 0.95, K1 = 0.1, α = 1.0. The 
counter-based method was not used in this task. With the 
continuous-valued state-variables it often takes several 
steps before changing state in the discretized state space, 
so an ordinary counter-based exploration changes the 
used action too rapidly to allow the agent to explore 
efficiently. This is also true for the heuristic rules used by 
BIMM in the maze task. It turns out that it is difficult to 
find good heuristics for the mountain-car task, as noticed 
by Randløv (2000) who tried to find a good reward 
shaping function.  

The heuristic rules for using SLAP are 1) SLAP if sign of 
velocity is different from the sign of the action’s thrust 

and 2) SLAP if velocity is positive and action is zero 
thrust. The second rule makes exploration slightly faster, 
but is not of much practical significance. These rules 
actually implement a controller that is at least nearly 
optimal for the task at hand, so one could ask what is the 
point of using a learning controller if we already have a 
good one? First of all, the initial controller is a static 
closed-loop controller while learning will give an 
adaptive open-loop controller that may be able to 
compensate for errors or calibration drift in real-world 
applications (see e.g. Främling (2004), for such an 
adaptive controller and Millán et al. (2002), where rules 
are used together with a learning controller). The initial 
controller may also be sub-optimal and incomplete, i.e. 
not cover the whole state space. Finally, the goal of this 
paper is to show that the BIMM and SLAP can be used 
for guiding exploration rather than evaluate the goodness 
of the heuristic rules.  
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Figure 4. Average number of steps as a function of episode from 

50 runs. The peaks are due to infinite episodes, limited to 

1 000 000 steps. Note the logarithmical scale on the y-axis. 

The results in Figure 4 are consistent with those in (Singh 
& Sutton, 1996) and (Randløv, 2000). SARSA uses an 
average of 38000 steps for the first episode, OIV uses 
1700 steps and BIMM uses 73 steps. The simulations 
were run for 10000 episodes with greedy exploration from 
9000 episodes onwards. The average numbers of steps for 



 

 

the last 100 episodes (9901-10000) were 81.2 for SARSA, 
78.6 for OIV and 55.6 for BIMM. The total numbers of 
steps for episodes 1 - 10000 are 1 140 000 for SARSA, 
830 000 for OIV and 554 000 for BIMM so the BIMM 
agent clearly learned the action-value function better and 
with less exploration.  

5.  Conclusions 

The results show that applying pre-existing knowledge 
through heuristic rules and the SLAP and BIMM 
mechanisms can make exploration more efficient both in 
deterministic and stochastic tasks, as well as in tasks 
involving continuous-valued state variables. For the 
heuristic rules used here, it is also apparent that benefits 
in exploration do not reduce the probability of learning a 
good value function. One big difference between BIMM 
and existing methods for improving exploration is that 
BIMM agents only use their own internal information 
about the task at hand. This makes them interesting 
compared with methods like reward shaping, which 
usually require some a priori knowledge about the 
environment, such as where the goal is located, the 
stochastic level of the environment or the number of sub-
goals to reach.  

Even though only “toy tasks” are used in this paper, it 
should be possible to generalize the results to many other 
RL tasks. This should be the case especially for tasks 
where state generalization is necessary due the number of 
states. Since SLAP and BIMM use standard ANN 
structures and learning rules, they are also applicable to 
tasks involving continuous-valued state variables and 
state classifiers. Such tasks are a subject of current and 
future research, where explosion of the state-space size 
due to state variable discretization is a problem.  
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