Introduction to Java programming
K.Främling 16.11.99
Chap 6, Page 1

6 User interaction

User interaction has changed greatly from version 1.0.x to 1.1.x. This especially concerns the handling of events.

The new model is much more flexible and simplifies writing well-structured, modular programs. Although version 1.1.x virtual machines have become a great majority, we will stick to the 1.0.x event model in this course. This is to be sure that our applets will work fine even with older internet browsers.

6.1 Reacting to a user click inside the applet display area

All we need to do in order to react to a mouse click inside the applet display area is to override the “mouseDown()” method:

public boolean mouseDown(Event evt, int x, int y)

{

imgRect.x += imgRect.width;

imgRect.width = -imgRect.width;

return true;

}

Here we are still working with our animation example from the previous chapter.

What we do is that we flip around the caveman each time that the user clicks inside the applet display area.

It might be a good idea to add the “synchronized” (more about this together with threads) keyword to the method declaration. This would make our class “thread-safe”. What could happen now, is that if the execution of the “mouseDown()” method is not finished when the animation thread interrupts it, we might just be in the middle of the turning operation, when we already have to repaint.

In the current case, there is no big danger. The caveman always ends up by being flipped correctly. But in more complex situations, the program may end up in a weird state and start to behave strangely.

6.2 User interface elements

For this chapter, we will use the existing course at “http://developer.java.sun.com/developer/onlineTraining/GUI/AWT”. This is a public course, which is accessible through links in the JDK documentation.

Accessing this course requires registering to the Java Developer Connection (JDC), which (at least for the moment) is free.

Only the chapters that are grouped together under the title “Widgets” are considered here.

6.3 Window-related user interface elements

Menus are connected to a certain window (or a certain application on some operating systems), so we could say that a menu belongs to a window.

Actually, a window has a menu bar, from which the various menus can be accessed.

Usually, a window also has some buttons for closing it, activating it, minimising, maximising and restoring it etc. Various events are generated and sent to the window when the user uses one of these.

Example 1 shows how to add a menu bar and menus to a window and how to handle the window closing event.

It is generally a good idea to subclass the "Frame" class if the application uses menus, since menu events end up in the "action()" method of the frame that contains them.

Menus are organised in a hierarchical fashion. First, there is a "MenuBar" object associated with the frame. This menu bar contains "Menu" object. Menus contain "MenuItem", "CheckboxMenuItem" or other "Menu" objects (for creating submenus).

It is also possible to associate menu shortcuts to menu items.

Example 1. Menu and window event handling (compiled and run)

import java.awt.*;

class MenuExampleFrame extends Frame

{

MenuBar
myMenubar;

Menu

fileMenu, testMenu;

public static void main(String argv[])

{

MenuExampleFrame
f = new MenuExampleFrame("Menu example");

f.pack();

f.show();

}

MenuExampleFrame(String title)

{

super(title);

Menu
sub_menu;

// Just so we get a size.

Canvas c = new Canvas();

c.resize(300, 100);

add(c);

// Set up the menus.

myMenubar = new MenuBar();

fileMenu = new Menu("File");

testMenu = new Menu("Test");

fileMenu.add(new MenuItem("New"));

fileMenu.add(new MenuItem("Open..."));

fileMenu.add(new MenuItem("Save", new MenuShortcut('s')));

fileMenu.add(new MenuItem("Close"));

fileMenu.add(new MenuItem("-"));

fileMenu.add(new MenuItem("Exit"));

testMenu.add(new CheckboxMenuItem("test1"));

sub_menu = new Menu("SubMenu");

testMenu.add(sub_menu);

sub_menu.add(new CheckboxMenuItem("test2"));

sub_menu.add(new CheckboxMenuItem("test3"));

myMenubar.add(fileMenu);

myMenubar.add(testMenu);

setMenuBar(myMenubar);

}

/** Catch menu events. */

public boolean action(Event evt, Object what)

{

if (evt.arg.equals("Exit")) System.exit(1);

if (evt.target instanceof CheckboxMenuItem)

System.out.println(((CheckboxMenuItem)

evt.target).getState());

else

System.out.println(evt.arg);

return super.action(evt, what);

}

/** Catch window events. */

public boolean handleEvent(Event evt)

{

if (evt.id == Event.WINDOW_DESTROY)

System.exit(1);

return super.handleEvent(evt);

}

}

Window events are sent to the "handleEvent()" method. The type of the event can then be tested against some event codes that are defined in the "Event" class.

It is usually a good idea to call the super-class' method for all standard event handling methods ("super.handleEvent(evt)" for instance). Otherwise we might interrupt the event propagation chain. If we forget to do this for "handleEvent()", for instance, then "action()" never gets called.

