
10th ITS European Congress, Helsinki, Finland 16–19 June 2014 SP 0050

Mobile crowdsensing of parking space using geofencing and

activity recognition

Mikko Rinne*, Seppo Törmä
Aalto University, PO Box 15400, FI-00076 Aalto, Finland, firstname.lastname@aalto.fi

Abstract
New mobile phones come with an increasing array of sensors. Recently mobile operating
systems have started to incorporate means to offer contextual information derived from
measurements of multiple sensors. A phone can be aware of whether it is transported in a
vehicle or carried on foot. We investigated how these sensing capabilities could be used to
derive information about available parking places in the absence of parking sensor
infrastructure and tested the method with a dedicated mobile client connected to a network
server. In this document we present the sensing method and the application, and qualitatively
analyze the pros and cons of the approach.

Keywords: mobile, parking, sensor

1 Introduction

Finding a good place to park a car is a practical problem faced by millions of drivers daily. At
personal level, it involves anxiety and uncertainty, and at the level of society, it wastes limited
resources – time, road space, and fuel – when drivers circulate in search of free parking
spaces. These problems could be alleviated if drivers had advance information of vacant
parking spots. The information can be gathered with dedicated sensor systems keeping track
of the reservation status of parking areas. However, installing network-connected sensors to
all parking areas presents a considerable cost.
 Information of vacant parking places can alternatively be gathered through crowdsourcing
-- that is, as direct input from drivers. Crowdsourcing has previously been utilized in multiple
parking assistance trials, e.g. [2, 4]. In the basic crowdsourcing approach drivers can assist
each other by marking free parking spots against the benefit of receiving information from the
community in return. SpotScout1, founded in 2004, implemented a combination of parking

1 http://www.bizjournals.com/boston/blog/mass-high-tech/2008/03/

Mobile crowdsensing of parking space using geofencing and activity recognition

2

garage infrastructure information, resale of private parking spaces and a market for on-street
parking, where any parked driver could sell their departure time to the next one in need of a
place. In 2010 Google Labs experimented with OpenSpot2, with which drivers could mark the
parking spots they vacate in crowded areas based on GPS locations. The system indicated age
of the marking with colors and rewarded helpful drivers with Karma points. ParkJam [2]
specializes on publishing the parking information as linked open data3. Until now systems
with some infrastructure backing have been more successful than purely crowdsourced
candidates. Parkopedia4 uses crowdsourcing for rating locations and adding missing spaces
but not to update real-time status. It currently (14.1.2014) lists over 28 million spaces in 40
countries. ParkatmyHouse5 is a broker for privately owned parking space, where availability
information is based on reservations booked through the system.
 Earlier trials with crowdsourced parking space availability have not had the same array of
mobile sensing technologies at their disposal. Combinations of sensors are starting to be used
to provide contextual information about the activity taking place around the device.
Information gathering from sensors of users' (mobile) devices is called crowdsensing [1]. In
this paper we study, whether smartphone sensor data could be utilized to automate the
process of aiding drivers in finding vacant parking places?
 We approach the problem with a method utilizing primarily the activity recognition of two
device states, in vehicle and on foot, combined with the location information available from
satellite positioning. These simple events are used to derive the occurrence of a parking event,
and consequently by means of complex event processing [3] to deduce that there was space to
park in the designated area. The method is demonstrated by a parking assistant application
running in Android OS and communicating with a network server.
 The rest of the paper is organized as follows. In Section 2 we describe the algorithm used
as basis for combined crowdsourced and crowdsensed detection. The new virtual sensors
available in Android OS are presented in Section 3. In Section 4 we present the patterns of
sensor events, which are used to detect parking. Our demonstration application is described in
Section 5. Challenges of the approach and suggestions for potential solutions are collected to
Section 6. Section 7 summarizes the concept and presents our conclusions, listing also
potential future improvements.

spotscout-parks-100k-in-new-funding.html
2 http://www.androidpolice.com/2010/07/09/
googles-open-spot-app-helps-you-find-a-parking-spot/
3 http://linkeddata.org/
4 http://parkopedia.com
5 http://parkatmyhouse.com/

Mobile crowdsensing of parking space using geofencing and activity recognition

3

2 Crowdsensing parking place availability

If the success or failure of a parking attempt can be detected, other drivers can be informed
about parking place availability. A successful attempt communicates that there was free space
and therefore it is likely that free space is still available in the area (unless the previous driver
occupied the last free slot). A failed attempt communicates that the parking area is full. In
addition, when a driver releases a parking spot and drives away, it indicates that free space
should be available again.
 If detection is partial - that is, succeeded and failed attempts can be detected only from a
subset of drivers, hereforth called visible drivers - the information can still be assumed valid,
although only for a limited period of time. Since there are also invisible drivers (not
contributing information) whose attempts cannot be detected, the information soon becomes
obsolete, and the status of the parking area becomes unknown (Figure 1).

Figure 1: Algorithm to derive the status of a parking area

3 Sensors in Android

In the spring of 2013 Google introduced a set of new features in the location API of the
Google Play Services6. Two particularly interesting additions from our target application
point-of-view were:

6 https://developer.android.com/google/play-services/location.html

Mobile crowdsensing of parking space using geofencing and activity recognition

4

• Geofencing API7 , which allows the specification of geographic areas (initially
circular) and generates enter and exit events when a device crosses the border.

• Activity recognition API8, which can provide updates of the activity type related to a
device. The current types are

o still: device is not moving
o tilting: the position or orientation of the device is changing, indicating a

change of activity type
o walking: the user carrying the device is walking
o on bicycle: the user is riding a bicycle
o in vehicle: the user is in a vehicle

Both of these can be considered abstract sensors that combine and synthesize information
from many hardware devices.

4 Patterns of succeeded and failed parking attempts

Based on the existence of geofencing and activity recognition the following event patterns can
be identified:
1) Succeeded parking attempt at parking area r:

a) enter r
b) in vehicle
c) on foot
d) exit r

2) Failed parking attempt:
a) enter r
b) in vehicle
c) exit r

3) Release of a parking space:
a) enter r
b) on foot
c) in vehicle
d) exit r

Reliable detection of the higher level events naturally requires that the underlying sensor
platform provides the input events reliably. With reliable detection, one more level can be
derived:

7 https://developer.android.com/reference/com/google/android/gms/location/Geofence.html
8 https://developer.android.com/reference/com/google/android/gms/location/
ActivityRecognitionClient.html

Mobile crowdsensing of parking space using geofencing and activity recognition

5

1. Succeeded parking attempt => Area r had space
2. Failed parking attempt => Area r is full
3. Release of a parking space = >Area r has space

The reliability of the whole chain is tied to the reliability of the sensor input and the
proportion of visible users from the total user base.

5 Demonstration application

A mobile Android client with accompanying server software has been created in research
project SPIRE9 (Smart Parking for Intelligent Real-Estate). Due to the importance of sensor
input and especially activity recognition, the client was implemented as a native Android
application. The architecture and main interactions between components are illustrated in
Figure 2. The mobile client (1) uses Google cloud services10 for sign-in, Google maps and
destination searches. It sends input from the user and sensors (B) to our HTTP server (2)
running over a Hunchentoot11 Common Lisp framework. The HTTP server uses a Sesame12
RDF13 Graph Store (3) server for data storage, sending SPARQL14 queries and update
commands (D) and retrieving RDF-format data (E). For push-messaging to the Client (1), the
HTTP server (2) sends notifications using Google Cloud Messaging15. The server can also
retrieve input from infrastructure sensors (4), if available. In this case a policy for handling
input from different sources is needed. If the infrastructure input is reliable, the primary
policy could be not to collect end-user input for sensor-equipped parking lots at all. Another
possibility is to collect end-user feedback for corrective actions in calibrating infrastructure
sensor input. Loop sensors under driveways may get out of sync due to various reasons, and
end-user input could be a fast way to re-calibrate the associated counters.
 To test the application 138 parking areas from the Aalto University campus area were
added to the database including e.g. location, radius, number of parking spaces and textual
information. The mobile client user interface is shown in Figure 3. A map view of parking
areas is shown in (a) together with the info-text for the selected parking area. The server
provides the 20 largest parking areas in view for display. For each parking area the color of
the symbol indicates the status (green, orange, red). If the status of any parking area changes,

9 http://www.hiit.fi/spire
10 http://developer.android.com/google/index.html
11 http://weitz.de/hunchentoot/
12 http://www.openrdf.org/
13 http://www.w3.org/RDF/
14 http://www.w3.org/TR/sparql11-query/
15 http://developer.android.com/google/gcm/index.html

Mobile crowdsensing of parking space using geofencing and activity recognition

6

the P-symbol color in the map view is automatically updated in all clients, where the symbol
is displayed. Information on a sample parking lot is shown in (b). Any user can also manually
input the status of a parking lot, as shown in (c). When the server detects parking, the client
displays a silent notification to the user asking, whether the user would like to update status
for the parking area. If no manual update is given, the system makes the default assumption
that there was space and automatically marks the area green. Other client features include e.g.
destination search, map window centering to current GPS location, favorite list management
with up-to-date display of parking area status, one-click activation of Google Maps navigation
to selected destination or parking area and provision of end-user surveys.

Figure 2: Parking software architecture and interactions

In this context we are more interested in what happens under the hood. The client activates a
circular geofence around every parking lot displayed on the screen. The client reports the
following events to our server:

• Geofence crossings: An entry/exit report with the corresponding parking area
identification is sent every time a geofence is entered or exited, respectively.

• Coordinates: When inside a geofence, client location is sent with five second
intervals.

• Recognized activity: When inside a geofence, every change between in vehicle, on
bicycle and on foot is reported, starting from a zero-state.

Mobile crowdsensing of parking space using geofencing and activity recognition

7

Figure 3: Mobile client screen captures of (a) map view, (b) parking lot info,

(c) manual status input

An example log of a successfully detected parking procedure at the university campus is
shown in Table 1. From this log it can be seen that the mobile client entered the parking lot in
a vehicle and exited with a person travelling on foot. This sequence would result in the
impacted parking area marked as having available space and a notification sent to the client
signalling the detected parking and asking, whether the user would like to manually update
the status of the parking area.

Table 1: Sample log of a successfully detected parking procedure
Time: Type: Event:
11:51:45 Geofence <Computer Science Building, Guest parking> <Enter>
11:51:54 Activity <IN_VEHICLE>
11:51:55 Location 60.187546 24.82136
 Location ...extra GPS coordinates removed...
11:52:40 Location 60.18752 24.821259
11:53:01 Activity <ON_FOOT>
11:53:01 Geofence <Computer Science Building, Guest parking> <Exit>

6 Challenges and potential solutions

There are a number of challenges and sources of imperfections in this approach. They can be
roughly divided to three categories:

• Algorithmic imperfections

Mobile crowdsensing of parking space using geofencing and activity recognition

8

• Technical challenges
• Social issues

In the following each one of these will be discussed separately.

6.1 Algorithmic imperfections

Full parking area detection victim: One major drawback of the automatic detection is that it
requires a victim. After a car gets the last available space, the area will still be marked as
having free space. Only when a car needs to turn back without parking (or an active user
manually marks the area as being full) the full-state is properly detected.
 Drive-thru problem: Also in our test setup there are parking areas, which need to be
driven through in order to access another parking area. Automatic separation of a simple
drive-through from an unsuccessful parking attempt is very challenging. It could be attempted
by an algorithm learning the driving habits of individual drivers and comparing driving
parameters between normal driving and driving while looking for a place to park. We have
not investigated this approach in detail, but expect it to be complicated and error-prone.
 Invisible drivers: As discussed earlier, parking infrastructure sensors would be able to
observe all vehicles, but our mobile client cannot be assumed to be running in all cars.
Parking area status may change due to users invisible to the system and at least one visible
user is needed to update the situation for others.

6.2 Technical challenges

Power consumption vs. geofence entry detection: The current Google location provider &
geofence API only trigger a geofence entry when the full area of positioning uncertainty is
contained inside the geofence. In practice this means that only satellite positioning is accurate
enough to trigger geofence entry to a parking area. Forcing satellite positioning to run
continuously has a high impact on power consumption in current devices and is therefore not
feasible. After observing that power consumption for activity recognition was considerably
lower than for satellite positioning, we settled on the compromise of continuously running
activity recognition. If the device is observed to be moving longer than 15 seconds, satellite
positioning is switched on. When the device becomes still again, satellite positioning is
switched off. With this approach no major increase in power consumption was observed in
connection with normal commuting and the geofence detections also worked when the device
was locked or our service was running on the background.
 Activity recognition uncertainty: Delayed, missed or wrong recognitions can
significantly undermine the automatic detection functionality of the application. The activity
recognition API provides the relative detection probabilities of all tested activities, allowing

Mobile crowdsensing of parking space using geofencing and activity recognition

9

adjustments between detection likelihood and reliability. So far our tests have mostly been
suffering from missed detections, which would indicate that a lower reliability requirement
might improve the situation.

6.3 Social issues

These challenges are related to the manual input provided by users, and are therefore common
to all systems with crowdsourced parking availability.
 Motivation: In order for end-users to be motivated to use the program and provide data,
they should get something useful for themselves. First, there needs to be a problem: If parking
space is easily available, there is no problem to be solved. Second, a sufficient number of
visible users for the same parking lot are needed to produce a tangible benefit. This creates
challenges in the startup phase of the system. The best scenario would be a group of people
depending on the same scarce parking spaces deciding together to take the application into
use. During startup phase gamification of the process could improve user motivation. In the
case of paid parking, discounts could be granted based on frequent and truthful reports.
 Individual benefit over common good: A user willing to secure a slot in his/her favorite
parking area might be tempted to artificially mark an area full e.g. when leaving from home to
divert other application users to other parking areas. Algorithmic detection of users, who
constantly input data contradicting with others, could be added. Manual feedback from
misbehaving users could be ignored or prioritized lower in setting the parking area status.
 Malicious users: In any crowdsourced system there may be users, who are willing to
confuse rather than to contribute. The right of any user to manually set the status of any
parking area means that a malicious user can quickly input false information to multiple areas.
This can be mitigated technically by restricting that only the status of nearby parking lots can
be changed. Also the user profiling measures discussed in the context of individual benefit
can be helpful.

7 Conclusions

More and more applications are being based on the ubiquitous availability of connected
sensors in smartphones. In addition to the amount and penetration of smartphones, also the
number of sensors per phone is increasing. Data derived from the sensors is getting more
advanced, with activity recognition now being offered as a service by the operating system.
 In this study we have considered a combined crowdsensing and crowdsourcing approach to
parking. Users of a mobile application get a near-real-time view of the current parking
situation on the map window of their choice. The application server can utilize any available
information source to provide parking status information. The mobile application can collect
end-user feedback on parking area status both through explicit feedback by the users and

Mobile crowdsensing of parking space using geofencing and activity recognition

10

through sensor-based estimation of the status of parking areas. At the time of writing the
authors are not aware of other sources for automatic mobile sensor based parking availability
detection.
 The automatic sensor-based solution utilizes primarily two types of sensor inputs:
geofences to indicate when a user enters or exits a parking area and activity recognition to tell,
whether the user is currently moving by car or on foot. Sequences of these sensor
observations can be used to derive whether the user (a) parked in the area, (b) was
unsuccessfully looking for a place or (c) released a parking space. From these observations
we can draw three higher-level conclusions:

• If the user was able to park, there was still space in the area (d)
• If a parking attempt was unsuccessful, the area is full (e)
• If a space was released, the area should no longer be full (f)

A clear benefit of the approach is the ability to assist drivers with real-time information on the
current parking situation without any other supporting infrastructure than the cellular network
and the smartphones of the car drivers. Based on both theory and experiences gained with the
application, the following characteristics are beneficial for the crowdsensing approach:

• Reasonably large area size: Detection accuracy is improved, when both driving and
walking in the parking area take more time. Also, if the status of a small parking area
can be seen by drivers without entering, a full parking area cannot be automatically
detected.

• Only one driving entrance: If there are multiple driveways, drivers may use the
parking areas for drive-through and cause erroneous conclusions that the area was full.

• Isolated parking areas: Overlapping geofences of parking areas may cause confusion
in detecting, which parking area was the real target. This will improve in the future
when other geofence shapes (polygons) are introduced.

• Homogeneous parking permissions: Similar to the issue of parking area isolation, if
one area contains multiple categories like openly available places, paid places,
employee parking of a nearby company and some places reserved for the handicapped,
the status of each category needs to be tracked individually. It may become very
difficult to achieve both accurate detection and an adequate body of visible users per
category.

The performance of the system can be improved by meeting as many of these conditions as
possible. All improvements in activity recognition speed and accuracy improve overall
performance and make it feasible to detect longer and more elaborate event patterns.
 End-user motivation is a non-trivial issue. First, there needs to be a problem with scarcity
before a driver can be motivated to seek assistance from a mobile application. Next, there has
to be a tangible benefit, which in turn requires an adequate body of users. Attracting early

Mobile crowdsensing of parking space using geofencing and activity recognition

11

adopters will not be easy, because especially the first user doesn't get any benefit, unless the
same application is usable also on parking areas equipped with infrastructure sensors. Finally,
the application users are competitors for the same parking space. There needs to be a mindset
of collaboration and common understanding that open sharing of information will be
everyone's benefit. Problems due to misbehaving users can be mitigated by personal profile
tracking and geographical restrictions to end-user input.
 Some shortcomings are inherent to the approach and will always be present. A full parking
lot cannot be detected in time by sensing user behaviour, only through manual reporting of the
situation or by tracking a driver who cannot find a spot. Roadside parking, or very small
parking areas where drivers can visually detect full occupation without driving into the area,
cannot be detected by mobile sensing. If there is a need to drive through a parking area (e.g.
drive past free 4h public parking places to reach full-day employee parking) it is very
challenging to detect without explicit input, whether the driver wanted to park at all.
 When these limitations are understood and good scenarios are found, crowdsensed parking
assistance is a promising approach to help drivers help each other in places where
infrastructure sensors are not available.

8 Acknowledgments

The work has been carried out in SPIRE and TrafficSense projects funded by Tekes and Aalto
University. Mobile client programming by Citat Oy16.

9 References

1. Ganti, R.K. et al.: Mobile Crowdsensing  : Current State and Future Challenges. IEEE
Commun. Mag. 49, November, 32–39 (2011).

2. Kopeck, J., Domingue, J.: ParkJam  : crowdsourcing parking availability information
with linked data (Demo). 9th Extended Semantic Web Conference (ESWC 2012). p. 5 ,
Heraklion, Crete, Greece (2012).

3. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Professional (2002).

4. Yan, T. et al.: CrowdPark  : A Crowdsourcing-based Parking Reservation System for
Mobile Phones. (2011).

16 http://www.citat.fi/en/

